Photonic band-gap formation by optical-phase-mask lithography.

نویسندگان

  • Timothy Y M Chan
  • Ovidiu Toader
  • Sajeev John
چکیده

We demonstrate an approach for fabricating photonic crystals with large three-dimensional photonic band gaps (PBG's) using single-exposure, single-beam, optical interference lithography based on diffraction of light through an optical phase mask. The optical phase mask (OPM) consists of two orthogonally oriented binary gratings joined by a thin, solid layer of homogeneous material. Illuminating the phase mask with a normally incident beam produces a five-beam diffraction pattern which can be used to expose a suitable photoresist and produce a photonic crystal template. Optical-phase-mask Lithography (OPML) is a major simplification from the previously considered multibeam holographic lithography of photonic crystals. The diffracted five-beam intensity pattern exhibits isointensity surfaces corresponding to a diamondlike (face-centered-cubic) structure, with high intensity contrast. When the isointensity surfaces in the interference patterns define a silicon-air boundary in the resulting photonic crystal, with dielectric contrast 11.9 to 1, the optimized PBG is approximately 24% of the gap center frequency. The ideal index contrast for the OPM is in the range of 1.7-2.3. Below this range, the intensity contrast of the diffraction pattern becomes too weak. Above this range, the diffraction pattern may become too sensitive to structural imperfections of the OPM. When combined with recently demonstrated polymer-to-silicon replication methods, OPML provides a highly efficient approach, of unprecedented simplicity, for the mass production of large-scale three-dimensional photonic band-gap materials.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Woodpile-type photonic crystals with orthorhombic or tetragonal symmetry formed through phase mask techniques.

This paper simulates the photonic band structure in face-centered-orthorhombic and face-centered-tetragonal woodpile-type photonic crystals and shows the fabrication feasibility of these crystals with phase mask based holographic lithography. The experimental demonstration on SU-8 photoresist indicates that a single optical element can replace a complex optical setup for the holographic fabrica...

متن کامل

A tunable three layer phase mask for single laser exposure 3D photonic crystal generations: bandgap simulation and holographic fabrication

Through the use of a multi-layer phase mask to produce fivebeam interference, three-dimensional photonic crystals can be formed through single exposure to a photoresist. In these holographically formed structures, the interconnectivity is controlled by the relative phase difference among contributing beams. Photonic band gaps are calculated and the simulation shows a maximum bandgap of 18% of t...

متن کامل

Holographic fabrication of 3D photonic crystals using silicon based reflective optics element

We present a silicon based single optical element that is able to automatically generate desired laser beam polarizations and intensities for the holographic fabrication of woodpile-type photonic crystal templates. A polydimethylsiloxane (PDMS) mold based reflective optics element is fabricated for the generation of five-beam interferences where four beams are arranged four-fold symmetrically a...

متن کامل

Investigating the Properties of an Optical Waveguide Based on Photonic Crystal with Point Defect and Lattice Constant Perturbation

In this paper, a photonic crystal waveguide with point defects and lattice constant perturbations of +5%, -5% are being investigated. Firstly waveguide structures with constant and specific parameters are being studied and photonic band gap diagrams for TE/TM modes are depicted; then pulse propagation in the frequencies available in the band gap are shown. After that, effects of parameters like...

متن کامل

ساختار نواری و تابش گرمایی بلور فوتونیکی دو بعدی سیلیکونی

In this research, we have studied the photonic band structure, optical properties and thermal emission spectrum of 2D Silicon photonic crystal with hexagonal structure. The band structure, band gap map and the gap size versus radius have been calculated by plane wave expansion method. The maximum band gap size of TE (TM) polarization and the complete gap size are 51% (20%) and 17% at air hole r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 73 4 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2006